首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1916篇
  免费   98篇
  国内免费   2篇
  2023年   3篇
  2021年   16篇
  2020年   3篇
  2018年   7篇
  2017年   9篇
  2016年   19篇
  2015年   33篇
  2014年   60篇
  2013年   81篇
  2012年   82篇
  2011年   79篇
  2010年   75篇
  2009年   68篇
  2008年   125篇
  2007年   120篇
  2006年   122篇
  2005年   117篇
  2004年   120篇
  2003年   104篇
  2002年   128篇
  2001年   25篇
  2000年   12篇
  1999年   29篇
  1998年   39篇
  1997年   29篇
  1996年   33篇
  1995年   27篇
  1994年   29篇
  1993年   31篇
  1992年   28篇
  1991年   17篇
  1990年   24篇
  1989年   22篇
  1988年   18篇
  1987年   13篇
  1986年   15篇
  1985年   23篇
  1984年   23篇
  1983年   17篇
  1982年   35篇
  1981年   24篇
  1980年   29篇
  1979年   16篇
  1978年   16篇
  1977年   14篇
  1976年   12篇
  1975年   9篇
  1974年   15篇
  1973年   7篇
  1972年   6篇
排序方式: 共有2016条查询结果,搜索用时 46 毫秒
81.

Background

Infants of mothers with placental Plasmodium falciparum infections at delivery are themselves more susceptible to malaria attacks or to infection in early life.

Methodology/ Principal Findings

To assess the impact of either the timing or the number of pregnancy-associated malaria (PAM) infections on the incidence of parasitemia or malaria attacks in infancy, we followed 218 mothers through pregnancy (monthly visits) up to delivery and their infants from birth to 12 months of age (fortnightly visits), collecting detailed clinical and parasitological data. After adjustment on location, mother’s age, birth season, bed net use, and placental malaria, infants born to a mother with PAM during the third trimester of pregnancy had a significantly increased risk of infection (OR [95% CI]: 4.2 [1.6; 10.5], p = 0.003) or of malaria attack (4.6 [1.7; 12.5], p = 0.003). PAM during the first and second trimesters had no such impact. Similarly significant results were found for the effect of the overall number of PAM episodes on the time to first parasitemia and first malaria attack (HR [95% CI]: 2.95 [1.58; 5.50], p = 0.001 and 3.19 [1.59; 6.38], p = 0.001) respectively.

Conclusions/ Significance

This study highlights the importance of protecting newborns by preventing repeated episodes of PAM in their mothers.  相似文献   
82.
83.
Infections, microbe sampling and occasional leakage of commensal microbiota and their products across the intestinal epithelial cell layer represent a permanent challenge to the intestinal immune system. The production of reactive oxygen species by NADPH oxidase is thought to be a key element of defense. Patients suffering from chronic granulomatous disease are deficient in one of the subunits of NADPH oxidase. They display a high incidence of Crohn’s disease-like intestinal inflammation and are hyper-susceptible to infection with fungi and bacteria, including a 10-fold increased risk of Salmonellosis. It is not completely understood which steps of the infection process are affected by the NADPH oxidase deficiency. We employed a mouse model for Salmonella diarrhea to study how NADPH oxidase deficiency (Cybb −/−) affects microbe handling by the large intestinal mucosa. In this animal model, wild type S. Typhimurium causes pronounced enteropathy in wild type mice. In contrast, an avirulent S. Typhimurium mutant (S.Tmavir; invGsseD), which lacks virulence factors boosting trans-epithelial penetration and growth in the lamina propria, cannot cause enteropathy in wild type mice. We found that Cybb −/− mice are efficiently infected by S.Tmavir and develop enteropathy by day 4 post infection. Cell depletion experiments and infections in Cybb −/− Myd88 −/− mice indicated that the S.Tmavir-inflicted disease in Cybb −/− mice hinges on CD11c+CX3CR1+ monocytic phagocytes mediating colonization of the cecal lamina propria and on Myd88-dependent proinflammatory immune responses. Interestingly, in mixed bone marrow chimeras a partial reconstitution of Cybb-proficiency in the bone marrow derived compartment was sufficient to ameliorate disease severity. Our data indicate that NADPH oxidase expression is of key importance for restricting the growth of S.Tmavir in the mucosal lamina propria. This provides important insights into microbe handling by the large intestinal mucosa and the role of NADPH oxidase in maintaining microbe-host mutualism at this exposed body surface.  相似文献   
84.
Although mitochondria are usually considered as supporters of life, they are also involved in cellular death. Mitochondrial outer membrane permeabilization (MOMP) is a crucial event during apoptosis because it causes the release of proapoptotic factors from the mitochondrial intermembrane space to the cytosol. MOMP is mainly controlled by the Bcl-2 family of proteins, which consists of both proapoptotic and antiapoptotic members. We discuss the current understanding of how activating and inhibitory interactions within this family lead to the activation and oligomerization of MOMP effectors Bax and Bak, which result in membrane permeabilization. The order of events leading to MOMP is then highlighted step by step, emphasizing recent discoveries regarding the formation of Bax/Bak pores on the outer mitochondrial membrane. Besides the Bcl-2 proteins, the mitochondrial organelle contributes to and possibly regulates MOMP, because mitochondrial resident proteins and membrane lipids are prominently involved in the process.Mitochondria are essential for the life of the cell. They produce most of the ATP via oxidative phosphorylation thanks to the respiratory chain that is embedded in the inner mitochondrial membrane. Consequently, mitochondrial dysfunction is implicated in the development of many human diseases, in particular, neurodegenerative disorders (Lin and Beal 2006). Mitochondria are also prominently involved in cell death, because they play a crucial role in many apoptotic responses. Apoptosis is a self-destruction program that is essential during the development of multicellular organisms. Its dysregulation has also been recognized as a main feature of many pathological conditions, especially cancer (Llambi and Green 2011).The executioners of apoptosis are a family of cysteine proteases termed caspases that cleave a variety of cellular targets, resulting in morphological changes, degradation of genomic DNA, and, ultimately, phagocytic removal of the apoptotic cell (Taylor et al. 2008). Caspases are synthesized as inactive zymogens that become activated after regulated limited proteolysis. Two different pathways of apoptotic signaling that result in the activation of executioner caspases 3 and 7 can be distinguished. In the extrinsic pathway, binding of ligands such as FasL or TNFα to a death receptor on the plasma membrane leads to the activation of initiator caspase 8. Active caspase 8 propagates the signal by directly cleaving and thereby activating caspases 3 and 7, which continue a proteolytic cascade ultimately leading to the removal of the cell.The intrinsic pathway, on the other hand, is initiated upon exposure to a number of stress situations, including DNA damage. A subclass of the Bcl-2 protein family termed BH3-only proteins (see below) becomes activated after an internal stress stimulus and translocates to the outer mitochondrial membrane (OMM), where they orchestrate a process called mitochondrial outer membrane permeabilization (MOMP). As an outcome of this process, pores are formed in the OMM, membrane integrity is lost, and contents of the intermembrane space gain access to the cytosol. One of the molecules that is rapidly released to the cytosol is cytochrome c, which is normally a soluble electron carrier between respiratory complexes III and IV. Together with the proapoptotic cytosolic factor APAF1, cytochrome c assembles into a caspase-activating complex termed the “apoptosome.” This complex subsequently activates caspase 9, which is able to cleave caspases 3 and 7, proceeding with the same downstream cascade as in the extrinsic pathway. Other intermembrane space proteins also contribute to cell death after being released into the cytosol (e.g., SMAC/Diablo, which blocks the caspase inhibitor protein XIAP).Remarkably, the two pathways are not completely independent. Cross talk between the extrinsic and intrinsic pathways exists because of caspase 8-dependent cleavage of the BH3-only protein Bid. Upon cleavage, Bid becomes activated, and the truncated version, tBid, translocates to the surface of mitochondria to induce MOMP. In so-called type II cells, this mitochondrial feedback loop is needed to induce apoptosis through the extrinsic pathway, because of the requirement of XIAP antagonism by SMAC.The loss of OMM integrity caused by MOMP is usually considered the point of no return in the whole process, because cells are committed to die once MOMP is initiated. Therefore, this process represents a major checkpoint of apoptosis and must be tightly controlled to ensure that it is initiated at the right time and place. The main molecular players of MOMP belong to the Bcl-2 protein family. Integration of proapoptotic and antiapoptotic signals by the network of Bcl-2 proteins determines whether or not the OMM is permeabilized. In the following sections, we describe in detail the stimulatory and inhibitory protein–protein interactions within this family, discussing various models of how the MOMP effectors, Bax and Bak, become activated. Furthermore, we focus on the actual event of membrane permeabilization, summarizing the current understanding of how pores are formed in the OMM by Bax and Bak oligomers.  相似文献   
85.
Recombination establishes the chiasmata that physically link pairs of homologous chromosomes in meiosis, ensuring their balanced segregation at the first meiotic division and generating genetic variation. The visible manifestation of genetic crossing-overs, chiasmata are the result of an intricate and tightly regulated process involving induction of DNA double-strand breaks and their repair through invasion of a homologous template DNA duplex, catalysed by RAD51 and DMC1 in most eukaryotes. We describe here a RAD51-GFP fusion protein that retains the ability to assemble at DNA breaks but has lost its DNA break repair capacity. This protein fully complements the meiotic chromosomal fragmentation and sterility of Arabidopsis rad51, but not rad51 dmc1 mutants. Even though DMC1 is the only active meiotic strand transfer protein in the absence of RAD51 catalytic activity, no effect on genetic map distance was observed in complemented rad51 plants. The presence of inactive RAD51 nucleofilaments is thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1. Our data demonstrate that RAD51 plays a supporting role for DMC1 in meiotic recombination in the flowering plant, Arabidopsis.  相似文献   
86.

Introduction

Clinically evaluating genotypic interpretation systems is essential to provide optimal guidance in designing potent individualized HIV-regimens. This study aimed at investigating the ability of the latest Rega algorithm to predict virological response on a short and longer period.

Materials & Methods

9231 treatment changes episodes were extracted from an integrated patient database. The virological response after 8, 24 and 48 weeks was dichotomized to success and failure. Success was defined as a viral load below 50 copies/ml or alternatively, a 2 log decrease from the baseline viral load at 8 weeks. The predictive ability of Rega version 8 was analysed in comparison with that of previous evaluated version Rega 5 and two other algorithms (ANRS v2011.05 and Stanford HIVdb v6.0.11). A logistic model based on the genotypic susceptibility score was used to predict virological response, and additionally, confounding factors were added to the model. Performance of the models was compared using the area under the ROC curve (AUC) and a Wilcoxon signed-rank test.

Results

Per unit increase of the GSS reported by Rega 8, the odds on having a successful therapy response on week 8 increased significantly by 81% (OR = 1.81, CI = [1.76–1.86]), on week 24 by 73% (OR = 1.73, CI = [1.69–1.78]) and on week 48 by 85% (OR = 1.85, CI = [1.80–1.91]). No significant differences in AUC were found between the performance of Rega 8 and Rega 5, ANRS v2011.05 and Stanford HIVdb v6.0.11, however Rega 8 had the highest sensitivity: 76.9%, 76.5% and 77.2% on 8, 24 and 48 weeks respectively. Inclusion of additional factors increased the performance significantly.

Conclusion

Rega 8 is a significant predictor for virological response with a better sensitivity than previously, and with rules for recently approved drugs. Additional variables should be taken into account to ensure an effective regimen.  相似文献   
87.

Objectives

Low levels of high-density lipoprotein (HDL) cholesterol are associated with an increased risk of acute myocardial infarction possibly through impaired endothelial atheroprotection and decreased nitric oxide (NO) bioavailability. Asymmetric dimethylarginine (ADMA) mediates endothelial function by inhibiting nitric oxide synthase activity. In patients with acute myocardial infarction, we investigated the relationship between serum levels of HDL and ADMA.

Approach and Results

Blood samples from 612 consecutive patients hospitalized for acute MI <24 hours after symptom onset were taken on admission. Serum levels of ADMA, its stereoisomer, symmetric dimethylarginine (SDMA) and L-arginine were determined using high-performance liquid chromatography. Patients with low HDL (<40 mg/dL for men and <50 mg/dL for women) were compared with patients with higher HDL. Most patients (59%) had low HDL levels. Median ADMA levels were markedly higher in the low HDL group (0.69 vs. 0.50 µmole/L, p<0.001). In contrast, SDMA and L-arginine levels were similar for the two groups (p = 0.120 and p = 0.064). Notably, ADMA, but not SDMA or L-arginine, was inversely correlated with HDL (r = −0.311, p<0.001). In stratified analysis, this relationship was only found for low HDL levels (r = −0.265, p<0.001), but not when HDL levels were higher (r = −0.077, p = 0.225). By multivariate logistic regression analysis, ADMA level was strongly associated with low HDL levels (OR(95%CI):6.06(3.48–10.53), p<0.001), beyond traditional confounding factors.

Conclusions

Our large population-based study showed for the first time a strong inverse relationship between HDL and ADMA in myocardial infarction patients, suggesting a functional interaction between HDL and endothelium, beyond metabolic conditions associated with low HDL levels.  相似文献   
88.
Three middle Eocene localities (Silica North, Silica South, Black Crow) recently discovered in Namibia have produced terrestrial faunas that rank among the few known from the period of insulation of Africa (Aptian-early Miocene). Collectively, the three localities have yielded anuran amphibians (one pipid frog, the earliest assemblage [three taxa] of ranoid frogs in Africa, one indeterminate family) and squamate reptiles (an amphisbaenian ‘lizard’, a snake that likely represents a colubroid, and two indeterminate ‘lizards’). These Eocene faunas suggest that ranoids, colubroids and African pipids are autochthonous to Africa. However, whereas pipids are vicariants inherited from West Gondwana, ranoids and colubroids (if really autochthonous) originated in Africa from unknown stems. Silica North and Silica South correspond to aquatic environments, permanent fresh water being present in the first locality; the environment of Black Crow was drier.  相似文献   
89.

Background and aims

Urea is the major nitrogen (N) form supplied as fertilizer in agriculture. However, urease, a nickel-dependent enzyme, allows plants to use external or internally generated urea as a nitrogen source. Since a urease inhibitor is frequently applied in conjunction with urea fertilizer, the N-metabolism of plants may be affected. The aim of this study was to determine physiological and molecular effects of nickel deficiency and a urease inhibitor on urea uptake and assimilation in oilseed rape.

Methods

Plants were grown on hydroponic solution with urea as the sole N source under three treatments: plants treated with nickel (+Ni) as a control, without nickel (?Ni) and with nickel and phenylphosphorodiamidate (+Ni+PPD). Urea transport and assimilation were investigated.

Results

The results show that Ni-deficiency or PPD supply led to reduced growth and reduced 15N-uptake from urea. This effect was more pronounced in PPD-treated plants, which accumulated high amounts of urea and ammonium. Thus, Ni-deficiency or addition of PPD, limit the availability of N and decreased shoot and root amino acid content. The up-regulation of BnDUR3 in roots indicated that this gene is a component of the stress response to nitrogen-deficiency. A general decline of glutamine synthetase (GS) activity and activation of glutamate dehydrogenase (GDH) and increases in its expression level were observed in control plants. At the same time, in (?N) or (+Ni+PPD) treated plants, no increases in GS or GDH activities and expression level were found.

Conclusions

Overall results showed that plants require Ni as a nutrient (while most widely used nutrient solutions are devoid of Ni), whether they are grown with or without a urea supply, and that urease inhibitors may have deleterious effects at least in hydroponic grown oilseed rape.  相似文献   
90.

Aims

This work examines Zn accumulation in four Anthyllis vulneraria subspecies supplemented with mineral nitrogen or grown in the presence of their symbiotic bacteria.

Methods

Anthyllis vulneraria subspecies were grown hydroponically in the presence of high levels of ZnSO4. The plants were either grown in symbiosis with one of two non-metallicolous or metallicolous Mesorhizobium inoculants or in the presence of KNO3.

Results

When exposed to 1,000 μM Zn, shoot and root biomass of three out of our four Anthyllis subspecies cultivated with NO3 dropped significantly by about 24–28 %; carpatica, the fourth subspecies, was not affected. Subspecies carpatica Zn tolerance was confirmed when in symbiosis with the metallicolous strain. In the presence of 1,000 μM Zn, the different Anthyllis subspecies concentrated more Zn in their roots than in their shoots and only subsp. carpatica accumulated a significant amount of Zn in its shoots. The most remarkable feature was the drastic decrease in Zn concentration in both roots (up to 2.5–3 fold) and shoots (2.6-fold) of subsp. carpatica exposed to 1,000 μM Zn and nodulated whatever the Mesorhizobium strain used, compared to the N-grown plants.

Conclusions

Our results bring new perspectives as regards phytostabilization, with the potential use of a rhizobium-inoculated leguminous subspecies displaying unusual Zn tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号